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ABSTRACT 

The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of 
thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually 
which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents 
a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived 
center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, 
level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining 
smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions 
created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology 
images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer 
variability. The processing time per image is significantly reduced.   

Keywords: Elasticity, sonoelastography, image processing, segmentation, region growing, fast marching methods, level 
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1. INTRODUCTION 
Thermal ablation techniques such as radiofrequency ablation (RFA) and high intensity focused ultrasound (HIFU) have 
attracted the interest of the research community for their capabilities to treat tumors as minimally invasive techniques 
[1,2].  In particular, promising results have been reported in early clinical trials for the treatment of hepatic tumors [3,4]. 
Imaging modalities that dynamically and precisely monitor the lesion during and after the treatment are crucial for the 
success of thermal ablation therapies.  

Ultrasound (US) is generally used for imaging guidance during the ablation procedures. It offers convenient real-time 
guidance of RFA needle placement, and it has the advantage of being cost-effective and readily available in most clinical 
sites. However, as an imaging modality to monitor the creation of the lesions, US did not exhibit good results [3]. 
Besides the low intrinsic contrast between treated and untreated tissues, artifacts due to the gas bubbles created during 
the treatment appear as hyper-echoic formations [5]. These formations do not represent accurately the extent of ablation. 
Gas bubbles resolve gradually, resulting in underestimation of the lesion size. On the other hand, MRI capabilities on 
resolving soft tissues can be used to discriminate thermally ablated from healthy tissue [6], but the procedure becomes 
expensive and time consuming. Contrast enhanced CT imaging has also been proposed [7]. In this modality, thermally 
ablated lesions are depicted as hypo-attenuating regions. However, it also presents disadvantages such as ionizing 
radiation exposure, CT contrast agents’ side effects, and extended time of the procedure. 

Thermally ablated lesions present an elevated elasticity modulus when compared to the surrounding tissue. 
Consequently, elasticity imaging modalities have been proposed as an alternative to monitor lesion creation and follow-
up [8,9]. In particular, sonoelastography [10] is an imaging technique that estimates the peak displacement of the tissue 
under an externally induced mechanical harmonic excitation [11]. In a previous study, sonoelastography was used to 
detect and measure thermal lesions in vivo in exposed-liver experiments [5]. Manual measurement of these lesions in the 
sonoelastographic images is challenging due to diffuse boundary definition and artifacts formed by respiratory motion 
and perfusion. As a result, outlining and measuring the lesions becomes a time-consuming process with high variability. 
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Although several methods have been proposed to segment US images, only a few techniques have focused on elasticity 
images. Fahey et al. proposed the application of a simple threshold to acoustic radiation force impulse elastograms [12] 
with good result in phantom materials due to the high contrast between the inclusion and the background. Techavipoo et 
al. [13] proposed a semi-automated segmentation algorithm of thermal lesions for compression elastography images. The 
algorithm was based on thresholding and morphological operations and was applied to in vitro RFA lesions.  Later, an 
automated algorithm was reported by the same group [14]. The approach consisted of a coarse-to-fine method which was 
initialized by template matching and then refined by an active contour model. This technique was evaluated in 2D and 
3D in vitro elastograms and a proof of concept was shown for 2D in vivo images. 

The purpose of this paper is to describe a semi-automated algorithm for segmentation of thermal ablated lesions from 2D 
in vivo sonoelastographic images. The proposed algorithm is based on level set techniques which are initialized using 
fast marching methods. The parameters for the algorithm are selected using the Mumford Shah functional [15]. The 
performance of the algorithm is compared against manual segmentation and data from gross pathology.  

2. ALGORITHM DESCRIPTION 
The overall diagram of the proposed algorithm is presented in Fig. 1a. The input image is first pre-processed in order to 
enhanced its contrast and reduce the effect of uneven illumination. Subsequently, the user initializes the algorithm by 
selecting the center of the lesion. This input is used as the seed for a fast-marching method that will output an initial 
guess of the segmentation of the lesion. A level set technique is then applied to refine the initial guess. This step is 
repeated several times varying the parameters of the level set. Each result is evaluated using the Mumford-Shah 
functional which finally decides the output of the algorithm. 

2.1 Pre-processing 

The pre-processing stage consists of several steps shown in Fig. 1b. First, the size of the image is reduced to match the 
resolution of sonoelastographic images. For the purposes of our experiments, the resolution of the images is 
approximately 1mm in the axial and lateral directions. Histogram stretching is then applied. Normalization of the 
histogram of the image reduces the range of parameters to search in following stages. To reduce the effect of noise and 
uneven illumination in the images, anisotropic diffusion [16] and homomorphic [17] filters are used.  

2.2 Fast marching method 

The Fast marching method [18] is a numerical form to solve the boundary value problem defined by: 

1)()( =∇ xTxF         (1) 

where F(x) is the speed function and T(x) is the time of arrival function. Given an interface which is always evolving in 
one direction (outwards or inwards), T(x) describes the time in which the front of the interface will arrive to location x 
given the speed function F(x). The latter function describes the speed of the front at a given location and (1) establishes 
the relationship between them. For the proposed algorithm, F(x) is built from the image I(x) to be segmented as: 
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The user inputs the position of the seed for which T(x)=0. 

2.3 Threshold Level Set segmentation 

Level set methods [18,19] are numerical techniques for tracking the evolution of interfaces (contours or surfaces). The 
interface is embedded as the zero level set of a higher dimensional function called the level set function Ψ(x,t). This 
function is then evolved and its behavior is defined by the following differential equation in a general case: 
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    (3) 

Where A is an advection term, P is a propagation term, and C is a spatial modifier term for the mean curvature κ. The 
scalar constants α, β, and γ are weights that determine the relative influence of each of the terms on the evolution of the 
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interface. The evolving interface is obtained at any given time iteration by extracting the zero level set from the higher 
dimensional function. The main advantages of these techniques are that arbitrarily complex shapes can be modeled and 
topological changes are handled implicitly.  

In the case of threshold level set methods, the propagation term is calculated as: 
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where U is the threshold which controls whether the interface grows or contracts. The final segmentation of the image is 
influenced by the intensity value of the sonoelastographic image and the smoothness of the contour. For our experiments 
γ was set to 50, β was set to 1 and α was set to 0 since the advection term is not required. The high weight for the 
curvature term is required to avoid leakage in the contour at places where the lesion edge is not well defined.  

2.4 Mumford Shah functional 

For an image I(x) and a contour Γ(x), a simplified version of the Mumford Shah functional [15] for the segmentation of 
an image in two regions is expressed as: 
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where l(Γ(x))is the length of the contour Γ(x), Γ(x)<0 represents the region in the image inside the contour which has a 
mean intensity value c1, Γ(x)>0 represents the region in the image outside de contour which has mean intensity value c2, 
and υ is a weight to determine the relative influence of the first term. This functional has a minimum when the inside 
and outside regions in the image are homogeneous and can be represented by their means. Also, the functional penalizes 
the length of the contour selected, and therefore it is minimal for regions with simpler form. 

2.5 Selection of parameters 

The main parameter that influences the final outcome of the algorithm is the threshold U in the level set stage. To select 
this parameter, several segmentations are performed over the image covering a range from 80 to 165. This range was 
selected evaluating few initial cases and was determined to work for the rest of cases. The final output of the algorithm is 
selected with the parameter U which minimizes the Mumford Shah functional. 

3. MATERIALS AND METHODS 
The performance of the algorithm was evaluated with a simulated sonoelastographic image and then applied to in vivo 
thermal lesions produced in a porcine liver. 

3.1 Simulations 

Two images containing 2 regions each (inclusion and background) were modified to add an arbitrary contrast between 
the regions. Subsequently, illumination patterns extracted from in vivo images were superimposed. A low pass filter was 
applied to simulate the point spread function expected from sonoelastographic images. Finally, white Gaussian noise is 
added. The response of the algorithm to different levels of contrast (10, 20, 30 and 40%) was evaluated in terms of the 
overlap (A∩B / A∪B) between the segmentation result (A) and the ground truth (B).  

3.2 In vivo experiments 

Eleven RFA lesions and seventeen HIFU lesions were created in eleven porcine livers. In each case, the pig was 
anesthetized and prepared for surgery. Subsequently, its abdomen was shaved and a laparotomy was performed along the 
ventral midline and subcostal area to expose the liver. This procedure was performed by the professionals at the Division 
of Laboratory Animal Medicine (DLAM) following the Animal Use Protocol approved by the University Committee on 
Animal Resources (UCAR) at the University of Rochester. 

For the RFA experiments, an RFA needle (LeVeen needle electrode, Boston Scientific, Natick, MA, USA) was inserted 
in the liver under US B-mode guidance. The needle was connected to an RF generator (RF 3000 Radiofrequency 
Ablation System, Boston Scientific, Natick, MA, USA). Following an established treatment algorithm for clinical 
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practice [20], an RFA lesion was created 1–2 cm beneath the liver surface. In the case of the HIFU experiments, a 
single-element focused transducer with a focal length of 6 cm and a diameter of 5cm (Model H-101, Sonic Concepts, 
Inc., Woodinville, WA, USA) was used. The focal intensity of the HIFU transducer is about 1000 W/cm2. A continuous 
sinusoidal signal (frequency: 1.1 MHz, voltage: 0.95 V) produced from a function generator (Model 3511A Pragmatic 
Instruments, San Diego, CA, USA) was fed to a radiofrequency amplifier (Model 2100L, Electronic Navigation 
Industries, Rochester, NY, USA ) which drove the transducer to generate the HIFU beams. The position of the HIFU 
transducer was adjusted to 4 cm above the liver surface. The water chamber was used as the acoustic coupling between 
the transducer and the liver surface. The bottom of the water chamber was made of an acoustic transparent film and 
adjusted to barely touch the liver surface. Within 20 seconds, a single lesion was created. Various-sized lesions were 
created in the liver by adjusting the duration of HIFU exposure. 

Two pistons (Model 2706, Brüel & Kjaer, Naerum, Denmark) were applied directly on the surface of the liver to 
generate the vibration field needed for sonoelastography. Input signals to the vibration sources were produced by a 
harmonic waveform generator (Model 3511A Pragmatic Instruments, San Diego, CA, USA) after amplification (Model 
2706, Brüel & Kjaer, Naerum, Denmark).  The pistons were vibrated at a combination of low frequencies (105, 140, 175 
and 210 Hz). Co-registered sonoelastographic and B-mode images were acquired using a linear probe array (M12L) 
connected to a Logiq 9 US scanner (General Electric Medical Systems, Milwaukee, WI, USA). The position and 
orientation of the probe over the liver was marked. After imaging, the pig was euthanized and the liver was excised. For 
each lesion, gross pathology was obtained approximately at the same position and orientation in which it was imaged. 
Subsequently, gross pathology was photographed and considered to be ground truth. 

3.3 Image analysis 

Three independent observers measured the area of each of the lesions from the sonoelastographic images using manual 
segmentation. One observer repeated this procedure three times. The same three observers repeated the process utilizing 
a semi-automatic segmentation algorithm. Similarly to manual segmentation, one observer measured the lesions three 
times with the semi-automatic algorithm. From all measurements, interobserver and intraobserver variability was 
assessed for manual and semi-automatic segmentation. In all cases, the time to perform the segmentation was recorded 
and the area of the lesions was compared to gross pathology. 

4. RESULTS 
4.1 Simulations 

Figure 2 shows two simulated sonoelastographic images produced with a contrast of 30% before (2a, 2.c) and after (2.b, 
2.d) the pre-processing stage of the algorithm. The resulting segmentation from the algorithm for each image is also 
depicted. In both cases, the selection of the parameter U based on the Mumford Shah functional resulted in the 
segmentation with higher performance for the tested range. Table 1 presents the performance of the segmentation 
algorithm for the two simulated images at different contrast levels. As expected, the performance is proportional to the 
contrast between the inclusion and the background. 

4.2 In vivo experiments 

The diameter of the eleven RFA lesions ranged from 5.8 mm to 20.5 mm, whereas the diameter of the seventeen HIFU 
lesions ranged from 9.9 mm to 23.3 mm. Table 2 summarizes the results for the RFA and HIFU in vivo experiments in 
terms of accuracy, repeatability and time of segmentation.  Results showed that the semi-automatic algorithm 
outperforms manual segmentation in all aspects evaluated. In particular, the time to measure a lesion reduces 
significantly from 3.5 minutes to 30 seconds. 

The semi-automated algorithm underestimated the diameter of the lesions in 0.4±1.9 mm when compared to manual 
segmentation. The correlation between both measurements was 80.2%. The error in diameter between the algorithm 
segmentation and the gross pathology images was 0.95±1.1 mm whereas the manual segmentation error was 1.6±1.3 
mm. The correlation between the algorithm and the gross pathology data was 88.7%. The inter- and intra-observer 
variability for the RFA and HIFU experiments combined was significantly reduced when the algorithm was used. The 
inter-observer coefficient of variation was decreased from 4.1% to 1.1% and the intra-observer coefficient of variation 
was lowered from 3.1% to 1.1%. The f-ratios ( 2

lg
2 / aman σσ ) were 11.3 and 16.6 for the intra-observer and inter-observer 

cases respectively.  
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Matched sonoelastographic, B-mode and gross pathology images are presented in Fig. 1. A HIFU lesion is found at the 
top of the sonoelastographic image. The corresponding B-mode image shows a hyperechoic region due to the gas 
bubbles formed by the thermal process. The area of the hyperechoic region does not correspond to the area of the actual 
lesion. The gross pathology image confirms the presence of the lesion. 

A comparison between manual and semi-automatic segmentation is illustrated in Fig. 2. Three independent observers 
manually drew different outlines for the same lesion. The same observers initialized the semi-automatic algorithm by 
choosing the center of the lesion. Even though they selected different centers, the algorithm produced the same outline.  

5. DISCUSSION 
Results show that sonoelastography can be used to show and measure thermal ablated lesions. However manual 
segmentation of the lesions presents challenges in terms of variability and time required. These problems make manual 
segmentation unfeasible for real-time monitoring of the ablation procedure.   

The semi-automatic algorithm presented in this work improves the overall performance of sonoelastography in terms of 
accuracy and repeatability. In addition, the time to measure the lesion was considerably reduced by a factor of 8 from 3.5 
minutes to approximately 25 seconds. Therefore, real-time measurements and monitoring of the lesions are possible. In 
this context, the algorithm needs to be initialized only at the beginning of the treatment. Subsequently, the resulting 
outline can be used as the input for the segmentation of the lesion in the following image during the length of the 
procedure. Template matching has been used previously to automate the initialization step of a segmentation algorithm 
for compression elastography [14]. In our experiments, this approach fails due to the presence of respiratory and 
boundary artifacts. Alternatively, in the case of RFA treatment, detection of the RFA needle in B-mode images could be 
used to initialize the algorithm.   

6. CONCLUSION 
Our work presents a new approach for semi-automated segmentation of lesions in sonoelastographic images. The 
algorithm pre-processes the image to compensate for noise and non-uniform vibration fields. The approach is based on 
fast marching and level set methods. Optimal parameter selection is performed by an adaptive process derived from the 
Mumford-Shah functional. Resulting segmentations of the algorithm show good agreement with pathology data 
(r2=88.7%) and manual segmentation results (r2=80.2%). More importantly, inter- and intra-observer coefficients of 
variability are reduced (f-ratios=11.3 and 16.6, respectively) and the time to segment a sonoelastographic image is 
decreased by a factor of 8 from 3.5 minutes to 25 seconds. Future work will focus on extending the algorithm to three 
dimensions and on automatic detection of lesions to further minimize human interaction. 
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Fig. 1. Flow diagram of the semi-automated algorithm (a) and the pre-processing stage (b). 

 

(a) (b) 

(c) (d) 

Fig. 2. Simulated sonoelastographic images before (a,c) and after (b,e) pre-processing. The resulting segmentation from the 
semi-automated algorithm is shown in red. 
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Table 1. Performance of the algorithm in terms of the percentage of overlap between the resulting segmentation and the 
ground truth for two simulated lesions. 

 10% Contrast 20% Contrast 30% Contrast 40% Contrast 

Lesion 1 92.3 94.3 96.4 96.9 

Lesion 2 80.3 82.5 87.2 88.7 

 

Table 2. Comparison between manual and semi-automatic segmentations for RFA and HIFU lesions. 

 Number 
of lesions 

Correlation 
coefficient 

(%) 

Average 
error in 

equivalent 
diameter 

(mm) 

Max 
error in 

equivalent 
diameter 

(mm) 

Intra-
observer 

coefficient 
of variation 

(%) 

Inter-
observer 

coefficient of 
variation 

(%) 

Average 
segmentation 

time per lesion 
(min) 

RFA Lesions        
Manual 11 86.2 1.4 5.9 2.9 5.5 3.9 

Algorithm 11 93.1 0.8 2.4 0.4 0.9 0.4 

HIFU Lesions        
Manual 14 86.3 2.2 8.2 4.5 5.4 3.2 

Algorithm 14 88.7 1.1 5.0 1.0 1.7 0.4 
 
 

 
(a) 

 
(b) 

 

 
 

(c) 

Fig. 3. Matched (a) sonoelastographic, (b) US B-mode, and (c) Gross pathology images. The red arrows show the HIFU 
lesion. Note that the hyperechoic region in the B-mode image does not cover the whole area of the lesion 
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(a) 
 

(b) 

Fig. 4. Comparison between (a) Manual and (b) Semi-automatic segmentation. Three independent observers (shown in blue, 
pink and violet) manually outlined the lesion and selected the center of the lesion to initialize the semi-automatic 

algorithm. 
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